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Abstract
We study the permanent regimes of the reduced Vlasov–Maxwell system
for laser–plasma interaction. A non-relativistic and two different relativistic
models are investigated. We prove the existence of solutions where the
distribution function is Boltzmannian and the electromagnetic variables are
time-harmonic and circularly polarized.

PACS numbers: 52.35.Mw, 52.38.−r, 52.27.Aj, 02.30.Xx
Mathematics Subject Classification: 35A05, 35B35, 82D10

1. Introduction

The in-depth understanding of laser–plasma interaction is not only of paramount importance for
the eventual success of inertial confinement fusion research, but also interesting for magnetic
confinement fusion research, since tokamak plasmas can be heated by electromagnetic waves.
The complex kinetic phenomena involved in this interaction, and the instabilities they may
generate [1], need to be studied by kinetic models [2], even though hydrodynamic models
[3] are more affordable to simulate complex, high-dimensional geometries. However, the use
of the full 3D Vlasov–Maxwell system is of course impossible in most practical situations.
Therefore, the reduced Vlasov–Maxwell system for laser–plasma interaction (hereafter called
the ‘laser–plasma system’; see (1)–(3) below) was introduced in [2]. The model has been
shown to capture some essential features of this interaction [2, 1], and it has been successfully
used for deriving relevant physical models in novel situations [4].

The laser–plasma system has been the object of several mathematical investigations
[5–7]. In this framework, it is interesting to find classes of exact solutions which may
serve as ‘reference solutions’, to which other solutions may be compared in order to study
the dynamic of the interaction. Reference solutions for the Vlasov–Poisson system are, for
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instance, the Bernstein–Greene–Kruskal or BGK modes [8], given by a distribution function
of the form f (W), where W is the energy of one particle. When the function f is convex,
as in the Maxwellian case f (W) ∝ e−W/θ , such solutions represent fundamental equilibrium
states; their existence and stability are well known [9]. For a general f , BGK solutions
may represent various wave phenomena; they have been the object of many investigations
in the physical community [10], and references therein. The mathematical theory is still
less developed; interesting existence and (in)stability results have appeared recently [10, 11].
For both Vlasov–Poisson and Vlasov–Maxwell systems, there are also linearized solutions
leading to the dispersion relations of the various types of waves; e.g. for electromagnetic
waves ω2 = ω2

p + k2, where (ω, k) are the pulsation and wave number, and ωp is the plasma
pulsation.

In this paper, we shall introduce a class of exact solutions to the laser–plasma system
which generalizes, at the same time, Maxwellian equilibria and linear electromagnetic waves.
Indeed, we investigate the existence of quasi-static solutions where the distribution function
is at any time proportional to the Boltzmann factor; this static character can be reconciled
with the electromagnetic character of the system by assuming a harmonic time dependence of
the electromagnetic field and a circular polarization. This ansatz was already used in [4], but
in a different physical and mathematical context. The latter work investigates the existence
of solitons in an electron–positron plasma, where no charge separation occurs. Here we are
dealing with a general ion–electron plasma, and we are looking for space periodic solutions.

The paper is organized as follows. We recall the mathematical results known about the
laser–plasma system and introduce the quasi-static model in section 2. Then, in section 3 we
solve (in the space periodic setting) the so-called Boltzmann problem, which consists in finding
the equilibrium density given the electromagnetic potentials, and we estimate its solutions. In
section 4 we construct a fixed point application and we study its properties. The existence of
Boltzmaniann equilibria then follows by applying the Schauder fixed point theorem. Several
extensions of the model are briefly discussed in section 5, and we conclude in section 6.

2. The harmonic Boltzmannian model

The reduced Vlasov–Maxwell system for laser–plasma interaction describes the evolution
of the distribution function of a population of electrons in a one space dimensional plasma
interacting with a laser wave. In a first approach, we assume that the ions are at rest and their
density is given—which is physically acceptable at the time scale of a laser wave. After a
suitable rescaling [5], this system can be cast in the following form:

∂f

∂t
+

p

γ1

∂f

∂x
−

(
E(t, x) +

A(t, x)

γ2
· ∂A

∂x

)
∂f

∂p
= 0, (1)

∂E

∂x
= ρb(x) − ρ(t, x),

∂E

∂t
− j (t, x) = 0, (2)

∂2A

∂t2
− ∂2A

∂x2
+ ρ̃(t, x)A(t, x) = 0, (3)

where f (t, x, p) is the electron distribution function (p denotes the x-component of the
momentum vector); E is the x-component if the electric field; A = (0, Ay,Az) is the vector
potential of the laser wave; ρb(x) is the (static) background ion density; γ1, γ2 are Lorentz
factors. We distinguish three cases:
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(i) the non-relativistic case (NR), γ1 = γ2 = 1;
(ii) the quasi-relativistic case (QR), γ1 = (1 + p2)1/2, γ2 = 1;

(iii) the fully relativistic case (FR), γ1 = γ2 = (1 + p2 + |A|2)1/2, which is the original model
of [2].

The moments ρ, ρ̃, j are given by

ρ(t, x) :=
∫

R

f (t, x, p) dp, ρ̃(t, x) :=
∫

R

f (t, x, p)

γ2
dp, j (t, x) :=

∫
R

p

γ1
f (t, x, p) dp.

(4)

We supplement the system (1)–(3) with initial conditions

f (0, x, p) = f0(x, p), (x, p) ∈ R
2,

(E, A, ∂tA)(0, x) = (E0, A0, A1), x ∈ R.
(5)

In [5] it was proved that, for suitable initial conditions, (1)–(5) has a unique classical solution,
which is global in time in the QR case, and local in time in the NR case. In the latter case,
the classical solution can be extended to a global weak solution with f continuous and A
continuously differentiable in all their variables. The FR model was studied in [6]. It was
shown that (1)–(5) admits a unique global classical solution preserving the total energy. The
stationary solutions of these models in a bounded domain have been analysed in [7].

All three models admit space periodic solutions. If the initial data are L-periodic in x and
satisfy the neutrality condition∫ L

0

∫
R

f0(x, p) dp dx =
∫ L

0
ρb(x) dx =: M, (6)

then, by using the continuity equation ∂tρ + ∂xj = 0, we deduce that the system remains
globally neutral at any time t > 0,∫ L

0

∫
R

f (t, x, p) dp dx =
∫ L

0

∫
R

f0(x, p) dp dx =
∫ L

0
ρb(x) dx. (7)

By uniqueness of the solution one gets also that (f (t), E(t), A(t)) are L-periodic in space for
any t > 0. From now on, we work in the framework of periodic functions: all differential
equations will be implicitly supplemented with L-periodic boundary conditions.

From (7) we deduce the existence of a unique function V = V (t, x), satisfying
∂2
xV (t, x) = ρb(x) − ρ(t, x), V (t, 0) = 0 and (V , ∂xV )(t, x) = (V , ∂xV )(t, x + L), for

all (t, x) ∈ [0, +∞) × R. The field E derives from the potential V , i.e., E = ∂xV .
The purpose of this paper is to study the existence of particular solutions of (1)–

(3) corresponding to local Boltzmannian equilibria. These are defined by f (t, x, p) ∝
e−W(t,x,p)/θ , where W(t, x, p) is the energy of one particle being at the phase space point
(x, p) at time t, and θ is the scaled temperature. As it is well known, such functions are
solutions to the Vlasov equation (1) iff W is independent of time. Thus, we assume that V

does not depend on t, and that A is time-harmonic and circularly polarized, i.e.,

Ay(t, x) + iAz(t, x) = a(x) eiωt , with a priori a(x) ∈ C.

Then the energy W(x, p) is given, according to the relativistic character, by

W(x, p) = 1
2 (p2 + |a(x)|2) + V (x), in the NR case,

W(x, p) =
√

1 + p2 + 1
2 |a(x)|2 + V (x), in the QR case,

W(x, p) =
√

1 + p2 + |a(x)|2 + V (x), in the FR case.
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Imposing the constraint (6) yields

f (x, p) = M
e−W(x,p)/θ∫ L

0

∫
R

e−W(y,q)/θ dq dy
, ∀(x, p) ∈ R

2. (8)

By direct computation we check that in all three cases f solves the Vlasov equation (1). We
then observe that j (x) = ∫

R

p

γ1
f (x, p) dp = 0, for x ∈ R, and thus the system (1)–(3) reduces

to

V ′′(x) = ρb(x) − ρ(x), x ∈ R, (9)

−ω2a(x) − a′′(x) = −ρ̃(x)a(x), x ∈ R, (10)

with ρ = ∫
R

f dp, ρ̃ = ∫
R

f

γ2
dp and f given by (8).

Of course, we are interested in solutions such that a �≡ 0, otherwise we find a Vlasov–
Poisson equilibrium. If such a solution exists, a appears as an eigenfunction of the operator
Aρ̃ := − d2

dx2 + ρ̃(x), associated with the eigenvalue ω2. It is well known that these eigenvalues
are real and generically simple; in particular, the lowest eigenvalue is always simple. As
the coefficients of Aρ̃ are real, we infer that both Re(a) and Im(a) are eigenfunctions; thus,
generically, they must be proportional. In other words, a(x) = a(x) eiϕ , where a is a real
eigenfunction and ϕ ∈ R. Then, |a(x)|2 = a(x)2, and W,f, ρ, ρ̃ are defined in terms of a;
while we may take ϕ = 0 by rotating the axes Oy,Oz. This means that, without loss of
generality, we may restrict our search to real functions a solution to (10).

We now rewrite the model (9), (10) in a form which will prove more convenient for
analysis. We shall denote by the subscript # the spaces of L-periodic functions, e.g.: L1

#(R) :={
g ∈ L1

loc(R) : ∀x, g(x + L) = g(x)
}
, C0

#(R) := {w ∈ C0(R) : ∀x,w(x + L) = w(x)}. First,
we introduce the operator � : L1

#(R) → C0
#(R) given by

�[g] = w ∈ C0
#(R), −w′′(x) = g(x), x ∈ (0, L), w(0) = w(L) = 0,

for any g ∈ L1
#(R). Then, we consider the function ψ : R → R given by

e−ψ(x)/θ =
∫

R

exp −W(x, p) − V (x)

θ
dp, x ∈ R,

namely, according to the relativistic character

NR: e−ψ(x)/θ = e−a(x)2/2θ

∫
R

e−p2/2θ dp, (11)

QR: e−ψ(x)/θ = e−a(x)2/2θ

∫
R

exp −
√

1 + p2

θ
dp, (12)

FR: e−ψ(x)/θ =
∫

R

exp −
√

1 + p2 + a(x)2

θ
dp. (13)

Note that there is a constant C(θ) ∈ R such that

ψ(x) = a(x)2

2
+ C(θ), in the NR and QR cases. (14)

In the FR case, by observing that
1
2 (

√
1 + p2 + |a(x)|) �

√
1 + p2 + a(x)2 �

√
1 + p2 + |a(x)|,

we obtain

C2(θ) e−|a(x)|/θ � e−ψ(x)/θ � C1(θ) e−|a(x)|/2θ ,
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with

C1(θ) :=
∫

R

exp −
√

1 + p2

2θ
dp >

∫
R

exp −
√

1 + p2

θ
dp =: C2(θ).

Finally, one gets

|a(x)|
2

� ψ(x) + θ ln C1(θ) � |a(x)| + θ ln
C1(θ)

C2(θ)
. (15)

The density ρ can be expressed in function of ψ , and the system (8)–(10) can be recast as

f (x, p) = K e−W(x,p)/θ ,

ρ(x) = K e− ψ(x)+V (x)

θ , x ∈ R, V = �[ρ − ρb],
(16)

ρ̃(x) = K

∫
R

1

γ2
e−W(x,p)/θ dp, (17)

−ω2a(x) − a′′(x) = −ρ̃(x)a(x), (18)

where the constant K = M
(∫ L

0

∫
R

e−W(y,q)/θ dq dy
)−1

is such that
∫ L

0 ρ(x) dx = M . We
call this system the Boltzmann–Helmholtz equations; they can be seen as a sort of nonlinear
eigenvalue problem.

3. The Boltzmann problem

For the moment we suppose that the function ψ is given and we solve the so-called Boltzmann
problem (16). The proof of the following proposition is immediate and left to the reader.

Proposition 1. For any function g ∈ L1
#(R) we have

‖�[g]‖L∞(R) � L‖g‖L1(0,L).

If the function g satisfies
∫ L

0 g(x) dx = 0, then �[g] ∈ C1
#(R) and we have∥∥∥∥ d

dx
�[g]

∥∥∥∥
L∞(R)

� ‖g‖L1(0,L).

Proposition 2. Let ψ ∈ L∞
# (R), ub ∈ L1

#(R), ub � 0,M = ∫ L

0 ub(x) dx and θ > 0. Then
there is a unique function u ∈ L1

#(R) such that

u = M
exp −ψ+�[u−ub]

θ∫ L

0 exp −ψ(y)+�[u−ub](y)

θ
dy

. (19)

Moreover, it satisfies

0 � u � inf
C∈R

M

L
exp

1

θ

(
1

L

∫ L

0
(ψ(y) − C) dy − inf

R

(ψ − C) + 4LM

)
=: uψ, (20)

and if ψ ∈ W 1,∞(R) then u ∈ W 1,∞(R) and

Lip u � Lip ψ + 2M

θ
uψ. (21)

Proof. One readily checks that (19) is equivalent to the minimization of the functional

J [v] :=
∫ L

0
{θσ (v(x)) +

1

2

∣∣∣∣ d

dx
�[v − ub]

∣∣∣∣
2

+ ψ(x)v(x)} dx,
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under the constraint
∫ L

0 v(x) dx = M , where σ(s) = s ln s, s > 0 and σ(0) = 0. This
problem is a variant of that considered in [9, 12] and its well posedness follows from a similar
argument. The functional J is strictly convex, l.s.c. and bounded from below on the set

K(L,M) =
{
v ∈ L1

#(R) : v � 0,

∫ L

0
v(x) dx = M

}
.

Indeed, by applying the Jensen inequality with the convex function σ , the measure dµ =
e−ψ(x)/θ

( ∫ L

0 e−ψ(y)/θ dy
)−1

dx and the function v/e−ψ/θ , one gets

J [v] �
∫ L

0
{θσ (v(x)) + ψ(x)v(x)} dx � θM ln

[
M

(∫ L

0
e−ψ(y)/θ dy

)−1
]

,

saying that infv∈K(L,M) J [v] > −∞. Take a minimizing sequence (un)n. By using the
Dunford–Pettis criterion we can assume (after a suitable extraction) that (un)n converges
weakly in L1(0, L) towards a function u ∈ K(L,M). Since J is convex we can pass to
the limit by involving the semi-continuity of J and we obtain that J [u] = infv∈K(L,M) J [v].
Writing the Euler–Lagrange equation we obtain

θ(1 + ln u) + �[u − ub] + ψ − α = 0,

where α enters as the Lagrange multiplier associated with the constraint
∫ L

0 u(x) dx = M and
thus we deduce (19). By using now the Jensen inequality with the convex function t 
→ e−t ,
the measure dµ = L−1 dx and the function (ψ + �[u − ub])/θ we obtain

exp

[
− 1

L

∫ L

0

ψ + �[u − ub]

θ
dy

]
�

∫ L

0
exp

(
−ψ + �[u − ub]

θ

)
dy

L
.

Therefore, by using proposition 1 we deduce(∫ L

0
exp

(
−ψ + �[u − ub]

θ

)
dy

)−1

� 1

L
exp

1

L

∫ L

0
exp

(
−ψ + �[u − ub]

θ

)
dy

� 1

L
exp

1

θ

(
1

L

∫ L

0
ψ dy + 2LM

)
,

which implies

0 � u(x) � M

L
exp

1

θ

(
1

L

∫ L

0
ψ(y) dy − ψ(x) + 4LM

)
.

This inequality is unchanged by replacing ψ with ψ − C, for any C ∈ R; one thus infers (20).
Assume now that ψ ∈ W 1,∞(R). By taking the derivative with respect to x in (19) one gets
by using proposition 1

|u′(x)| = |u(x)|
∣∣∣∣∣ψ

′(x) + d
dx

�[u − ub]

θ

∣∣∣∣∣ � ‖u‖L∞(R)

‖ψ ′‖L∞(R) + 2M

θ
,

and (21) follows immediately. �

4. The fixed point application

For any a > 0 we define the fixed point application Fa : W
1,∞
# (R) → W

1,∞
# (R),Faa = ã for

any a ∈ W
1,∞
# (R), where

• ψ is given, according to the case, by (11), (12) or (13);



Boltzmannian waves in laser–plasma interaction 11703

• ρ is the unique solution to the Boltzmann problem

ρ = K exp

(
−ψ + �[ρ − ρb]

θ

)
,

∫ L

0
ρ(x) dx = M;

• ρ̃ = ρ in the NR and QR cases, while in the FR case

ρ̃(x) = M∫ L

0 exp
(−ψ(y)+�[ρ−ρb](y)

θ

)
dy

∫
R

exp
(−√

1+p2+a(x)2+�[ρ−ρb](x)

θ

)
√

1 + p2 + a(x)2
dp;

• λ is the first eigenvalue of the operator Aρ̃ = − d2

dx2 + ρ̃ with L-periodic boundary
conditions, i.e.,

λ = inf
b∈H 1

# (R),b �=0

∫ L

0 b′(x)2 + ρ̃(x)b(x)2 dx∫ L

0 b(x)2 dx
; (22)

• ã is the corresponding eigenfunction of Aρ̃ :

−ã′′(x) + ρ̃(x)ã(x) = λã(x), x ∈ (0, L), (23)

ã(0) = ã(L), ã′(0) = ã′(L), (24)

such that ã > 0 and
∫ L

0 ã(x)2 dx = a2.

Remark 1. It is well known that the first eigenvalue of Aρ̃ with L-periodic boundary conditions
is simple [13] and that the eigenfunction vanishes nowhere. Therefore, ã = Faa is well
defined.

The properties of the application Fa are summarized up below.

Proposition 3. Assume that ρb ∈ L1
#(R), ρb � 0,

∫ L

0 ρb(x) dx = M and let a, θ be positive

real numbers. For any a ∈ W
1,∞
# (R) such that

∫ L

0 a(x)2 dx � a2 construct ψ, ρ, ρ̃, λ and
ã = Faa as above.

(i) There are constants ρ�, a� depending on a, L,M, θ such that

‖ρ̃‖L∞(R) � ‖ρ‖L∞(R) � ρ�, ‖ρ ′‖L∞(R) � ‖a‖L∞(R)‖a′‖L∞(R) + 2M

θ
ρ�,

‖ρ̃ ′‖L∞(R) � ‖a‖L∞(R)‖a′‖L∞(R)(1 + θ) + 2M

θ
ρ�, 0 � λ � ρ�, ‖ã‖W 2,∞(R) � a�.

(ii) Fa is continuous with respect to the topology of C0
#(R) on the set C = {a ∈ C0

#(R) :
‖a‖L2(0,L) � a and ‖a‖L∞(R) + ‖a′‖L∞(R) � a�}.

Proof. (i) Take a ∈ W
1,∞
# (R) such that ‖a‖L2(0,L) � a. In the NR and QR cases, we deduce

from (14) and (20) the bound

0 � ρ � M

L
exp

1

θ

(
1

L

∫ L

0

a(x)2

2
dx + 4LM

)
� M

L
exp

1

θ

(
1

2L
a2 + 4LM

)
.

In the FR case, combining (15) and (20) yields

0 � ρ � M

L
exp

1

θ

(
1

L

∫ L

0
(ψ(y) + θ ln C1(θ)) dy − inf(ψ + θ ln C1(θ)) + 4LM

)

� M

L
exp

1

θ

(
1

L

∫ L

0

(
|a(x)| + θ ln

C1(θ)

C2(θ)

)
dy + 4LM

)

� M

L
exp

1

θ

(
1√
L

a + θ ln
C1(θ)

C2(θ)
+ 4LM

)
.
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We easily check that in all three cases we have |ψ ′(x)| � |a(x)||a′(x)|, x ∈ R and thus, by
proposition 2 we deduce

‖ρ ′‖L∞(R) � ‖a‖L∞(R)‖a′‖L∞(R) + 2M

θ
‖ρ‖L∞(R).

The estimate for ρ̃ follows, since in all three cases γ2 � 1 and 0 � ρ̃(x) � ρ(x). By taking
the derivative with respect to x in the expression of ρ̃ we obtain by direct computation

‖ρ̃ ′‖L∞(R) �
(

‖a‖L∞(R)‖a′‖L∞(R)

(
1 +

1

θ

)
+

2M

θ

)
‖ρ‖L∞(R).

We now estimate the eigenvalue λ and the eigenfunction ã. Equation (22) shows that λ � 0
and, by taking b = 1, λ � ρ�. Then, from (23) we deduce∫ L

0
{ã′(x)2 + ρ̃(x)ã(x)2} dx = λ

∫ L

0
ã(x)2 dx,

and hence ‖ã‖H 1(0,L) �
√

λ + 1a. By using the Sobolev inclusion H 1(0, L) ⊂ L∞(0, L) one
gets easily that ‖ã‖L∞(R) + ‖ã′‖L∞(R) + ‖ã′′‖L∞(R) � a�(a, L,M, θ).

(ii) Take a sequence (an)n ⊂ C which converges towards a ∈ C with respect to the
topology of C0

#(R). For any n let ψn, ρn, ρ̃n, λn, ãn = Faa
n constructed as in the definition of

the fixed point application. Similarly let ψ, ρ, ρ̃, λ, ã = Faa. The sequence (ψn)n is bounded
in W 1,∞(R) and therefore, by the Arzelà–Ascoli theorem we can extract a subsequence
converging in C0

#(R). Obviously the limit function is ψ and by the uniqueness of the limit we
deduce that the whole sequence (ψn)n converges towards ψ in C0

#(R). In the same manner,
since supn

(‖ρn‖L∞(R) + ‖ d
dx

ρn‖L∞(R)

)
< +∞ we deduce that ρn → ρ, ρ̃n → ρ̃ in C0

#(R).
The fact that limn→+∞ λn = λ stems from general spectrum continuity theorems [14],

or can be directly deduced from (22). Finally, as supn ‖ãn‖W 2,∞(R) < +∞, we can extract a
subsequence (ãnk )k converging in C1

#(R) towards some function ˜̃a. By passing to the limit
with respect to k in the weak formulation of ãnk we obtain that the limit ˜̃a satisfies

− ˜̃a′′
(x) + ρ̃(x) ˜̃a(x) = λ ˜̃a(x), x ∈ (0, L), ˜̃a(0) = ˜̃a(L), ˜̃a′

(0) = ˜̃a′
(L).

Moreover since ãn � 0, ‖ãn‖L2(0,L) = a for any n, we have ˜̃a � 0 and ‖ ˜̃a‖L2(0,L) = a and thus
˜̃a = ã = Faa. By the uniqueness of the limit we have limn→+∞ ãn = ã in C1

#(R). �

We are now in position to prove our main result by using the fixed point method.

Theorem 4. Assume that ρb ∈ L1
#(R), ρb � 0,

∫ L

0 ρb(x) dx = M and let θ be a positive
real number. For any a > 0 there is at least one classical solution (ρ, a) ∈ C1

#(R) × C2
#(R)

for the Boltzmann–Helmholtz equations (16)–(18) satisfying ρ � 0,
∫ L

0 ρ(x) dx = M,a �
0,

∫ L

0 a(x)2 dx = a2.

Proof. Consider F̃a = Fa|C . The set C is convex and compact in C0
#(R); by proposition 3 we

know that F̃a(C) ⊂ C and that F̃a is continuous with respect to the topology of C0
#(R). By

the Schauder fixed point theorem we deduce that there is a fixed point a ∈ C. By construction
we have a � 0,

∫ L

0 a(x)2 dx = a2. Consider now ψ, ρ, ρ̃, λ as in the definition of F̃aa.

Obviously λ � 0, ρ � 0,
∫ L

0 ρ(x) dx = M and we easily check that (ρ, a) ∈ C1
#(R)×C2

#(R).
Observe that λ > 0. Indeed, we have

λ =
∫ L

0 {a′(x)2 + ρ̃(x)a(x)2} dx∫ L

0 a(x)2 dx
�

∫ L

0 ρ̃(x)a(x)2 dx∫ L

0 a(x)2 dx
.

If λ = 0 then ρ̃(x)a(x)2 = 0 for any x, and since by construction ρ̃ > 0 we deduce that a = 0
which contradicts

∫ L

0 a(x)2 dx = a2 > 0. Consider now ω = √
λ > 0 and thus (ρ, a) is a

solution of (16)–(18). �
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5. Extensions

One could investigate the existence of ‘nonlinear harmonics’ of the ‘fundamental mode’ given
by theorem 4, i.e., solutions to (18) where ω2 is not the first eigenvalue of Aρ̃ , but one of
higher rank. Unfortunately, it appears impossible to generalize the construction of Fa to
these eigenvalues. The reason is that, with periodic boundary conditions (unlike the Dirichlet,
Neumann or Fourier b.c.), these eigenvalues may be double for some ‘exceptional’ densities
ρ̃. For instance, if ρb = cst and a = cst, then ρ̃ = cst and all eigenvalues except the first
one are double. There is apparently no way of defining a continuous mapping ρ̃ 
→ ã in the
neighbourhood of the exceptional densities. Nevertheless, the existence of harmonics is very
likely, as the eigenvalues are generically simple.

Another interesting extension is the case where the ion density is no longer given, but
is also proportional to the Boltzmann factor. Let us denote by the subscript 1, resp. 2, the
quantities relative to the electrons, resp. ions; we introduce a new parameter µ representing
the electron/ion mass ratio. Then, we have f1 ∝ e−W1/θ1 and f2 ∝ e−W2/θ2 . The energy W1 of
one electron is given in section 2; that of one ion is, according to the relativistic character

W2(x, p) = 1
2µ(p2 + |a(x)|2) − V (x), (NR),

W2(x, p) = µ−1
√

1 + (µp)2 + 1
2µ|a(x)|2 − V (x), (QR),

W2(x, p) = µ−1
√

1 + µ2(p2 + |a(x)|2) − V (x), (FR).

We arrive at the following system:

V ′′(x) = ρ2(x) − ρ1(x), x ∈ R, (25)

−ω2a(x) − a′′(x) = −(ρ̃1(x) + µρ̃2(x))a(x), x ∈ R. (26)

The arguments of sections 3 and 4 can be extended without bad surprises to this two-species
model. However, the solutions corresponding to the first eigenvalue are not very interesting:
one easily checks that all the functions ρ1, ρ2, ρ̃1, ρ̃2, a are constant, and V ≡ 0.

6. Concluding remarks

In this paper, we have shown the existence of quasi-equilibrium solutions to the laser–plasma
system, where the distribution function is Boltzmannian and the electromagnetic variables are
time-harmonic, at least at the fundamental frequency. The existence of solutions at higher
frequencies is probable, both for one-species and two-species models. These solutions appear
as generalizations of Vlasov–Poisson equilibria, but are clearly different from them as an
electromagnetic wave is present. They can be viewed as a simple case of nonlinear interaction
between the electron plasma oscillations and the laser wave. The implicit relation (through
the spectrum of the operator Aρ̃) between the frequency ω and the space period L yields in the
linear limit the dispersion relation for electromagnetic waves.

Quasi-equilibria can serve as references for analysing the dynamics of laser–plasma
interaction, e.g. Raman and Brillouin scattering, which are among the most challenging
issues to deal with in order to achieve controlled inertial confinement fusion. Indeed, from
a dynamical point of view, it should be noted that quasi-equilibria may be unstable, unlike
the Vlasov–Poisson equilibria which are nonlinearly stable, even under 1D Vlasov–Maxwell
perturbations [5]. These solutions may also serve as benchmarks for testing numerical codes,
even though the numerical solution of the Boltzmann problem appears quite difficult when ub

and/or ψ feature large variations.
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[1] Bertrand P, Réveillé T, Ghizzo A and Albrecht-Marc M 2005 Vlasov models for laser-plasma interaction
Transport Theory Stat. Phys. 34 103–26
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